Moisture content is important, since wet litter has an influence on the occurrence of footpad lesions in broilers and turkeys (MAYNE, 2005). To overcome these problems clinoptilolites may be used in poultry diets as insurance against wet litter and severe footpad lesions.
Basically, clinoptilolites are free flowing agents that bind water which gives benefits to the animal by increasing the dry matter content of faeces. Additionally clinoptilolites have a very high affinity to bind intestinal surplus ammonia and helps therefore to discharge liver metabolism concerning the detoxification of ammonia. Trial results in broilers clearly demonstrated the positive effects of clinoptilolites on better litter quality resulting in fewer problems with footpad lesions (KAMPF, VAN DER AA, 2008). Positive effects of clinoptilolites are described in literature i.e. on production parameter (SUCHÝ et al., 2006; VAN DER AA, HANGOOR, 2009), as well as on reduced pathogenic pressure of the carcass (AL-NASSER et al., 2011) or on the reduction of the transfer of radioactive compounds into animal tissues (MITROVIC et al., 2007).
Aim of the presented investigation was the testing of a clinoptilolite under practical conditions on various turkey farms.
Material and Methods
A practical turkey trial was carried out to investigate the effects of a clinoptilolite of sedimentary origin at 3 farms (trial period from August 2010 (start 1st farm) until April 2011 (ending 3rd farm) in a cross over design (2 fattening rounds with in total about 27,000 animals (6 barns) per treatment). Clinotilolite was tested in fattening phase 3 and 4 (5th till 13th wk of age) at an inclusion rate of 1.5%. The feed additive was added on top to the commercial diets (based on wheat, soy, and corn; P3: 23.0% XP, 12.2MJ ME; P4: 20.0% XP, 12.5MJ ME) fed in the similar periods and farms. Due to the on top inclusion nutrient and energy levels of the diets were slightly reduced in the clinoptilolite treatment (P3: 22.6% XP, 12.0MJ ME; P4: 19.7% XP, 12.3MJ ME; calculated values). To avoid seasonal effects both treatments (with and without clinoptilolite) were tested at every farm at the same time respectively (2 identical stables next to each other, one for control, and one for clinoptilolite treatment). In the 2nd round the stables were used for the respective other experimental group. All farms used male BIG 6.
Trial results were obtained by the ordinary data collection system on the farm (mortality, body weight, and feed consumption per day per stable). Once a week (pooled sample of minimum 10 fresh droppings from minimum 5 different places in the stable) fresh droppings were taken from every stable to analyze DM, and nitrogen fractions of the faeces. Analysis was performed at the commercial accredited laboratory LKS Lichtenwalde (Germany). Beside that also ammonia air concentration (Dräger Pac 7000 NH3) was measured at the same time of faecal sampling (at 10 different places in the stable, 25 cm above the ground, resp.). Also, about 50 feet from each stable were taken at random at slaughter to score footpad lesions. Due to the fact that slaughter dates varied the collected feet were cleaned and stored at -18°C and scored altogether at the same time. For this a system was used recommended by Moorgut Kartzfehn (Bösel, Germany; graph 1).