Commercial mycotoxin management preparations are primarily based on adsorbents. These adsor-bents can bind, to a certain extent, specific myco-toxins in the gastro-intestinal tract of the animal.
The binding efficiency depends on the chemical structure of the adsorbent and the mycotoxin. Most used adsorbents are aluminosilicates, mainly zeolites and hydrated sodium calcium aluminosilicates (HSCAS), and aluminosilicate-containing clays. Most aluminosilicates can bind polar mycotoxins (aflatoxins and fumonisins). Yeast-derived products are also known for their binding properties, but here the focus is more on the non-polar mycotoxins (zearalenone). Different studies showed that zearalenone is better bound by yeast derived products than by aluminosilicates. Adsorption of mycotoxins is a valid strategy, but complete binding is not achievable for some mycotoxins, such as trichothecenes. Preservative com-pounds are useful as they reduce the growth of mycotox-in-producing fungi in the feed. Hepatoprotective molecules and molecules that improve the semi-permeability of the epi-thelial membrane are also of interest as difficult-to-bind my-cotoxins impair the function of these tissues.
Benchmark study
.An in vitro model was set-up by the Centre of Excellence in Mycotoxicology and Public Health at the university of Ghent (Belgium, MYTOX member) together with Orffa to test different single compounds and mixtures for their binding capacity (%) of mycotoxins via LC-MS/MS. Binding of the mycotoxin by the adsorbents was tested at pH 3 and subsequent raised to pH 7. The mycotoxin standard mixture tested consists of afla-toxins (AFB1, AFB2, AFG1, AFG2), fumonisins (FB1, FB2), zear-alenone (ZEN), ochratoxin (OTA), deoxynivalenol (DON), HT-2 Toxin (HT-2), T-2 Toxin (T-2) and enniatin B (ENN B).
The model was applied to analyse a large number (n=30) of mycotoxin binders. The binding capacity of 9 of them, considered premium mycotoxin binders, is displayed here (Table 1). To make an assessment of the general binding capacity, the binding percentages obtained from the study are converted using the following legend: complete binding (“+++”>90%), partial binding (“++”>50%; < 90%), limited binding (“+”>10%; <50%) and no significant binding (“0”<10%).